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In this paper, a method of analysis for the free vibration of a three-layer sandwich arch
with an elastic or viscoelastic core, and with various kinds of axis-shape and boundary
conditions is presented. The characteristic equation of the free vibration is derived by
applying Green functions. The Green functions are obtained in a discrete form for various
kinds of sandwich arches with non-uniform cross-section and radius of curvature. They
enable the setting up of the frequency equation in eigenvalue form.
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1. INTRODUCTION

The theory of the free vibration of a three-layer sandwich arch has been considered by
only a few investigators. Ahmed [1, 2] has analysed the flexural vibration characteristics
of a curved sandwich beam with an elastic core by the finite element displacement method.

It is the purpose of this paper to present an analytical method of the free vibration of
a three-layer sandwich arch with an elastic or viscoelastic core, and with an arbitrary
axis-shape and various boundary conditions. The characteristic equation of the free
vibration is derived by applying Green functions which are the two pairs of the normal
and tangential displacements of a sandwich arch under the individual action of a tangential
concentrated load and a normal concentrated load. The Green functions are obtained as
the discrete type solutions of the differential equations governing the behaviour of a
sandwich arch in this paper. The discrete type solutions give solutions at each discrete point
uniformly distributed on a sandwich arch axis, and they can be obtained for a sandwich
arch with non-uniform cross-section and radius of curvature as well as a sandwich arch
with uniform cross-section and radius of curvature. They enable the setting up of the
frequency equation in eigenvalue form. It is shown that by applying the characteristic
equation; the behaviour of the free vibration of a sandwich arch can be analysed efficiently
without any calculation using a trial and error method, and that the numerical solution
has a uniform convergency and a good accuracy. Moreover, the effect of the elastic or
viscoelastic core shear modulus and the depth of the core to the natural frequency and
the loss factor of a sandwich arch are evaluated. The analysis is carried out according to
the assumptions. (1) The face plates are elastic. (2) The core is elastic or linearly
viscoelastic, with a shear modulus of G or G = Gy(1 + iv). (3) There is no slipping between
the face plates and the core at their interfaces. (4) Shear strains in the face plates are
negligible, and longitudinal direct stresses in the core are negligible. (5) The shear strain
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is constant across the depth of the core. (6) Transverse direct strains in both core and face
plates are negligible.

2. FUNDAMENTAL EQUATION OF SANDWICH ARCH

The equilibrium equations of a three-layer sandwich arch having a normal load p(s) and
a tangential load ¢(s) whose element is shown in Figure 1(a) are given by the following
equations:

dQ/ds + N/R + p(s) =0, dN/ds — Q/R + q(s) =0, dM/ds = Q, (la—<)

where Q, N and M are the shear force, normal force and bending moment of a sandwich
arch, R the radius of curvature of a sandwich arch axis, and s is the axial co-ordinate of
a sandwich arch whose origin is set at the left end.

Next, the relations between the shear force, axial force and bending moment of a
sandwich arch and those of the lower and upper face plates are obtained from Figure 1(a)
as follows:

QZQ1+Q2+bh‘E, N:N1+Nz, M:M1+M2+N1d1+dez, (23.*(3)

where Qi, 0,, N, N, and M,, M, are the shar forces, axial forces and bending moments
of the lower and upper face plates, 7 is the shear stress of the core, b is the width of a
sandwich arch, % is the depth of the core, d; and @, are the distances between the centroidal
axis of a sandwich arch and the centroidal axes of the lower and upper face plates. The
distances d, and d, are as follows:

d] =+ dz = H, dz = (E]A]/EzAz)d], (33, b)

where H=h+ t,/2 + t,/2, and ¢, and #, are the thicknesses of the lower and upper face
plates, E1 A4, and E,A, are the axial rigidities of the lower and upper face plates.

The relations between the angular, tangential, normal displacements of a sandwich arch
and those of the lower and upper face plates are given by the following equations:

0,=0,=0, Wi+ wy, = 2w, Uy =1 =1u, (4a—)

where 6,, 6, and 6 are the angular displacements at the centroidal axes of the lower, upper
face plates and for the sandwich arch, wy, u;, w,, u, and w, u are the tangential, normal
displacements at the centroids of the lower, upper face plates and for the sandwich arch.

p(s)ds
—l—» q(s)ds

MQ2 Q2+dQ2
2@ N, + dN,
N>
M, + dM
My ot J 7 jQ+da
N A ) M+ dM
Q A T¢+dT N+ dN
M Q 2= =T
4% |\/|%\|+dl\élll\l M, M, + dM;
Nl Q 1+ 1 Nl‘% ﬁ»Nl_'_le
1 Q;+dQ; Q,+do
1 1

Figure 1. Element of sandwich arch.
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The relations between the angular displacement and the bending moments of the lower
and upper face plates are given by the following equations:

M] = —E]I] de/dS], Mz = —Ezlz de/dSz, (Sa, b)

where E\ I, E,I, and sy, s, are the flexural rigidities and the axial co-ordinates of the lower
and upper face plates, ds; = (Ri/R)ds, ds; = (R:/R)ds, and R;, R, are the radii of
curvature of lower, upper face plate axes.

From the equations (2b, ¢), (5a, b) the following equation is obtained:
(E:[(R/R) + E;I,(R/Ry))d0/ds = —d,N — M + HN,. (6)

The relations between the tangential and normal displacements and the axial forces of the
lower and upper face plates are given by the following equations:

N] = E]A](dW]/dS] — M/Rl), Nz = EzAz(sz/dSz — M/Rz), (73, b)

From the equations (2b), (4b), (7a, b) the following equations are obtained:

R (dw _u)_ R(ydw_dw _u)_
E A, R, <ds — R>—N1, E A, R <2 & ds R> =N—N,. (8a, b)

Next, the relations between the displacements and the shear forces of the lower and
upper face plates are given by the following equations:

lec;l“ll((‘iz‘]#;ll—@), Q2=G2Az<g;‘2+}gz—0>, (9a, b)

Ky K>

where G, 4,, k; and G,, A, k, are the elastic shear moduli, the cross-sectional areas, the
shear factors of the lower and upper face plates.

The shear stress T of the core of a three-layer sandwich arch shown in Figure 1(a) is
given by the following equation [1] under the assumption that the shear strain is constant
across the depth of the core

G du h h
T :h|:HdS+ <1 +2R>W| — <1 —2R>W2:|a (10)

where G is the core shear modulus.
From the equations (2a), (4b), (9a, b) and (10), the following equation is obtained:

G1A1£ I G,A4; R du
K R K, R, ds

- t GHb)

_ G4 | G\, G4 1 _h |
=0+ <K1 + o >6 2|: o R Gb<l 2R>]w

- (G‘A‘ 1 G4l 2Gb>w|. (11)

K1 R] K> Rz
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From the tangential equilibrium equation of the lower face plate shown in Figure 1(b),
dN,/ds = Q1/R, + bt, the following equation is obtained:

dN]/dS = Q]/R + (Rl/R)b’C (12)
From the equations (4b), (10) and (12) the following equation is obtained:

Gidi 1, oy HR\du _dNi_ G Ly o bR
<K1 R th )ds ds = K R0+2G/1R<1 2R>W

GiAi 11 bR
(m RR 7265 >w1 (13)

3. DISCRETE TYPE GREEN FUNCTION OF SANDWICH ARCH

By introducing the following non-dimensional expressions:

__or _ NP _ M B W u
Xa = E Xo= ol Xp= Edy Xa=10, Xos = [ Xus = /
_ Nih W s _ ) . .
Xo = GHbI’ X = I n=7 d=1or 2: [ is length of arch axis,

the non-dimensional Green functions are defined by the following two pairs of tangential
and normal displacements of a sandwich arch with a concentrated load P, or P, at a
position s = z, (z/[ = £) on the arch modelled in this paper

Xisln, &) = P WL, Xl &) = P U, &) (14a, b)
Xoslr, &) = o W, &), Xoul1, &) = g; U:n. €). (14c. d)

The first pair Xi5(n, £) and Xi6(57, &) are obtained as the two displacements with the other
quantities X11(y7, &), . .., Xis(y7, &) for a normal concentrated load P, acting at a position
z/l = ¢ on a sandwich arch axis; p(y) = P,d(y — &)/l and the second pair Xas(y, &) and
Xx(n, &) are obtained as the two displacements with the other quantities
Xa(n, &), ..., Xxs(n, &) for a tangential concentrated load P, acting at a position z// = &
on a sandwich arch axis; ¢(n) = P,0(y — £)/I, and they satisfy the following simultaneous
differential equation obtained by arranging the equations (la—c), (6), (8a, b), (11) and (13)

dX g Pdl

8
z de 5(1!6(17 5)9 d = 15 27 t= 1 ~ 85 (15)

where 8(y — &) is Dirac’s delta function, d., 0., are Kronecker’s deltas, Ey/, is standard
flexural rigidity, G, is given in Appendix A.

By integrating the equation (15) over the interval [0, 7], the following integral equation
is obtained:

no8 2
411

Xa(n) = Xa(0) + J Y, Ge(OXa(O dl + &

e=1

dau(n — &), (16)

where u(y — £) is a unit step function.
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01l m

Figure 2. Discrete points on arch axis.

Next, the bounded interval 0 < 5 <1 is divided into m equal-length parts, and each
divisional point is distinguished by a number from 0-m as shown in Figure 2.

By applying the numerical integration method using equally spaced argument values,
the equation (16) is discretely expressed as follows:

i 8 2
X = Xao + z Z ﬁi/Gte/XIc/ + % Sdzu(i — x), (17)
J=0e=1 odo
where u(i — x) =0 (i < x),0-5( = x) or 1 (i > x), x being the position of the concentrated
load P,, f3; is the weight coefficient of numerical integration, i = O—m and Xy, is the value
of the function X, (1) at a discrete point i/ on the sandwich arch axis shown in Figure 2.
The discrete type solution [8] of the simultaneous differential equation (15) can be

obtained by the following form:

8 2
Xai =), auwiXao + Clmt)fﬂ, d=1,2, t=1-8, i=0-m. (18)
k=1 Eol,
By substituting the equations Xuo, Xu1, Xao, - . . , Xa: given by equation (17) for equation

(18) in numbered order, the simultaneous equations to evaluate the elements @, and agpe
in the discrete type solution (18) are obtained finally as follows:

i
Qai = Ok + Z

j=0e

I e

BiiG s + 8urdpou(i — X), k=19, (19)
1

The integral constants Xy, X, . . ., Xao being involved in the discrete type solution
(18) are to be evaluated by the boundary conditions of a sandwich arch.

The boundary conditions of a hinged end, fixed end and free end of a sandwich arch
can be expressed simply as follows:

M=w=u=M=M,=0 Xs = Xis = Xas = GuXpp + G X = 0):

simply supported end,
O=w=u=w =0 (X = Xus = Xis = X = 0): fixed end,
O=N=M=N,=0 (Xa = Xp = X = Xy = 0): free end.

By using these boundary conditions and the discrete type solution (18), the two pairs
of discrete type non-dimensional Green functions Xy and Xy defined by the equations
(14a—d) are obtained for a sandwich arch with various kinds of boundary condition as
follows:

PP L

/Ya’Si = Eo 10 Wﬁ.\'a Xdﬁi = Eo [0

U{Ii.\'a d = 19 29 (203, b)

where W, and U, are the values of the functions W,(y, £) and U.(n, &) defined by
the equations (14a—d) at a discrete point i on a sandwich arch with a normal concentrated



510 T. SAKIYAMA ET AL.

load P, or a tangential concentrated load P, at a discrete point x, and they become as

follows:
Wae = ti@aso + (Qaspi + 0las7i) + sy + talasyi + Aasor
Ui = Husoi + t(Quspi + %aas7i) + sy + talasi + Aasors
where
o=1, p=2, g=4, r=38, o= —Gu/Gw: 2-hinge arch
o=1, p=2, qg=3, r=7, a=0: fixed arch
o=1, p=2, g=4, r=38, o= —Guu/Gsp: hinged-fixed arch
o=4, p=5 g=6, r=8 oa=0: free-fixed curved beam

ti, b, t3, ty are listed in Appendix B.

4. CHARACTERISTIC EQUATION OF THE FREE VIBRATION OF A SANDWICH ARCH

From equations (1a—c), (6), (8a, b), (11) and (13), the differential equations of the normal
functions O, N, M, 0, W, i, N, and w, of the harmonic free vibration of a sandwich arch

are obtained as follows:

d

‘@

==

_ dN O _ dM =
275 2 —
po’it =0, ds R 0, ds Q,

[N

S

(Elll + B )dH:—M d;N + HN;,

R

Exds - <2dw dW‘—“):N—NI, <G‘A‘R+G2A2R+0Hb>

ds ds R K1 R K R,
= GA | GANs | G4 1 _h\ |
—Q+<Kl + O )9 z[ o, 1 Gb<1 2R>]w

GAl G4 1

_< - P R2+2Gb>nl,

G |, o HR\AT dN,_Gidi 1y o bR, B\
<K1 R th >ds ds = K RQ—’—2G/’1R<1 >W

where p is the mass per unit length of the sandwich arch.
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By using the following non-dimensional normal functions Y,—Y5,
Y, = —OP/EL, Y, = —NP/EI,, Ys = — MI/E I, Y, =0,
Ys = w/l, Ys =1/l, Y, = N\h/GHb, Ys = wi/H,
the following simultaneous differential equation is derived from the equations (22a-h):

8
dY,/dy =Y F.Y., =138, (23)

e=1

where F\¢ = A%, F»s = A*, other F,, = G, are listed in Appendix A.

)\.4

_ pw’l’ , o elastic core
T EJ° T wd(1 + ip): viscoelastic core

@y, p are the circular frequency and loss factor of the sandwich arch.
The discrete type solution of the simultaneous differential equation (23) is obtained by
the same method at the third section as follows:

8
Yo=Y awYw, (=18, i=0-m, 24

k=1

where

P8
i = O + Z Z BiiFijQes s k=1-8.

j=0e=1

By using the frequency equation derived from the discrete type solutions (24) and the
boundary conditions, the values of the natural frequency parameter A of the free vibration
of a sandwich arch are evaluated basically, but it needs a calculation using a trial and error
method. Therefore, to avoid this, a method setting up the frequency equation in eigenvalue
form is proposed as follows.

By applying the Green functions defined by the equations (14a—d),

P,
Eoly

P,
Eoly

XdS('/Is 5) = VVu’("a é)a Xlé(na é) = Utl(ns é)s d = 13 2

the following simultaneous integral equations concerning the non-dimensional normal
functions Y5(&) and Ys(&) of the harmonic free vibration of a sandwich arch are obtained
according to Betti’s law as shown in Appendix C

Y(&) = ﬁj [Ui(n, O)Ys(n) + Wi(n, ) Ys(n)] dn, (25a)

Ys(¢) = FJ [Ux(n, &) Ys(n) + Wa(n, &) Ys(yn)] dy. (25b)

By applying the numerical integration method using the (m + 1) equally spaced
argument values, the equations (25a, b) are discretely expressed as
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Yo, = A Z iU Yo + Wi Ysp), (26a)

j=0

st = 14 Z ﬁ”li(UZIX YQ,‘ + WZ/‘.\' Ys,') x = 0-m. (26b)
j=0

j=

From the equations (26a, b), the homogeneous linear equations in 2(m + 1) unknowns,
Ys0—Ysm, Yoo—Yen, are obtained as

Z [(ﬁm/ Ul/l\‘ - KS.\'.\‘) Yé/’ + ﬂm/ Wl/'.\‘ YS/] = 07 (273)
=0
Y [BniUsis Yei + (B W — K8.) Y51 = 0, x = 0-m, (27b)
j=0

where k = 1/2%
The characteristic equation of the free vibration of a sandwich arch is obtained from
equations (27a, b) as

ﬁmO UIO(] — K ﬁml Uno te ﬁmm Ulm(] i ﬁmO WIO(] ﬁml Wno te ﬁmm Wlm(]
ﬁmo Ui ﬁml Un—x - ﬁmm Uim : ﬁmo Wi ﬂml Wi e ﬁmm Wim
: : : l : : :
ﬁmo Uiom ﬁml Uiim e ﬁmm Uim — K : Bm() Wiom ﬁml Wiim e ,Bmm W
7777777777777777777777777777 — ——— | =o.
ﬁmo Uzoo ﬁml UZIO e ﬁmm UZm(] i ﬁmO Wzoo — K ﬂml Wzm e ﬁmm Wzmo
ﬁmo Ui /))ml Uon e ﬁmm Usmi : ﬁmo Wi ﬁml W —K -+ ﬁmm Wam
: : : l : : :
ﬁmo Usom ﬁml Usim e ﬁmm U : ﬁmo Wom ﬁml Wim e ﬁmm Womm — K

(28)

By applying the characteristic equation (28), the values of the natural frequency
parameter A and the loss factor p of a sandwich arch with a viscoelastic core can be
evaluated efficiently without a calculation using a trial and error method.

5. NUMERICAL RESULTS

In the numerical analysis, the following equation is used as the standard moment of
inertia of the cross-sectional area /, of a three-layer sandwich arch

I = 2(b83/12 + h?bt/4).

This equation is the moment of inertia of area of the idealized I-section which consists of
two flanges corresponding to both face plates of a sandwich arch and a web of negligible
area and a height of the core depth of a sandwich arch.

5.1. CONVERGENCY AND ACCURACY OF NUMERICAL SOLUTIONS

Numerical solutions of the frequency parameter 4 for some sandwich circular or
parabolic arches are given in Tables 1-5 with the other theoretical solutions for the flat
curved beams similar to the straight beams from references [1] and [2]. The dimensions
and material properties of these sandwich arches are: length of arch / = 0-7112 m, core
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TABLE 1

Convergency of frequency parameter L and comparison of natural frequency f(Hz) to the
other theoretical value of 2-hinge sandwich circular arch with rise ratio f/L = 0-02084
({=07112m, h = 12-7mm, ¢t = 04572 mm, G/E = 0-:0012)

Present study
A

r A

m Ahmed
‘ A \ f f

Mode 32 40 48 56 64 64 Ref. [1]

1 4-338 4-338 4-338 4-337 4-337 182-7 199-5
2 6-029 6-023 6019 6017 6-016 3514 394
3 8687 8-668 8657 8651 8-647 726-1 746
4 11-022 10-982 10-960 10-947 10-939 1162 1175
5 13-114 13-044 13-006 12-984 12-969 1633 1639
6 14-996 14-886 14-828 14-793 14-770 2118 —
7 16-724 16-565 16-480 16-430 16-:397 2611 —
8 18-318 18-108 17-993 17-924 17-880 3104 —

thickness /1 = 12-7mm, face thickness ¢, =t =t = 04572 mm face elastic modulus
E =E, =E,=E =689 x 10" N/m? core shear modulus G = 0-0012E core density
p. = 32-8 kg/m’, face density p, = 2680 kg/m°.

The numerical solution has been obtained by applying the trapezoidal rule, and has a
uniform convergency as shown in Tables 1-5. In Table 1 the discrepancies between the
authors’ values and those calculated by Ahmed [1] are of the order of 10% for the two
lower frequencies, but for the others the discrepancies are small. In Table 2 the authors’
values have a good agreement with those calculated by Ahmed [1, 2]. In Table 3 the italic
values calculated by Ahmed [2] are the frequencies for a free-fixed straight sandwich beam,
and the authors’ values for the flat free-fixed curved beam similar to the straight beam are
not in good agreement with the values for the free-fixed curved sandwich beam by Ahmed
[1] but with the italic values by Ahmed [2].

TABLE 2

Convergency of frequency parameter A and comparison of natural frequency f(Hz) to the
other theoretical value of fixed sandwich circular arch with rise ratio f/L = 0-02084
(I=07112m, h = 12-7mm, ¢t = 0:4572 mm, G/E = 0-0012)

Present study

P N Ahmed
m f
s A A f f—/%
Mode 32 40 48 56 64 64 Ref. [1] Ref. 2

1 5023 5021 5-020 5019 5-019 244-6 2642 240
2 7-093 7-083 7-078 7-074 7-072 4856 522 474
3 9-459 9-435 9423 9-415 9-410 859-8 889 843
4 11-553 11-509 11-486 11-471 11-462 1276 1312 1253
5 13-479 13-406 13-367 13-343 13-328 1725 1767 1697
6 15-250 15-138 15-079 15-043 15-020 2190 — —
7 16-909 16-748 16:662 16:611 16-578 2668 — —
8 18411 18-242 18-128 18-059 18-014 3151 — —
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TABLE 3

Convergency of frequency parameter L and comparison of natural frequency f(Hz) to the
other theoretical values of free-fixed sandwich circular curved and straight beams
({=07112m, h = 12-7mm, ¢t = 0-4572 mm, G/E = 0-0012, f/L = 0-02084, f/L = 0)

Present study
; A N Ahmed
m f
r N f -
Mode 32 40 48 56 64 64 Ref. [1] Ref. [2]
1 1-866 1-865 1-865 1-865 1-865 338 179 3397
2 4-528 4-525 4-523 4-523 4-522 198-5 266 200-5
3 7-289 7-278 7-272 7-269 7-266 513 546 517
4 9-735 9-708 9-694 9-685 9-679 910 934 918
5 11-922 11-871 11-844 11-827 11-816 1356 1379 1368
6 13-:065 13-063 13-063 13-062 13-062 1657 — —
7 13-904 13-820 13-775 13-748 13-731 1831 — 1844
8 15-707 15-580 15-511 15-471 15-444 2316 — 2331

5.2. FREE VIBRATION OF SANDWICH ARCH WITH ELASTIC CORE

5.2.1. Frequency curve and free vibrational mode of a sandwich circular arch

The frequency curves of 2-hinge and fixed sandwich circular arches with / = 0-7112 m
t=t=t=04572mm, h = 12-7mm, E, = E, = Ey= E and G/E = 0-0012 are shown in
Figures 3 and 4. The dotted lines are the frequency curves of the arch with the
corresponding idealized I-section, which consists of two flanges corresponding to both face
plates of the sandwich arch and a web of negligible area and a height of the core depth
of the sandwich arch. For some 2-hinge sandwich arches in Figure 3, the free vibrational
u-mode is shown in Figure 5.

It has been shown that the difference of the frequency curves between sandwich arch
and I-sectional arch becomes large at higher degrees of free vibration, and that the
transition of the free vibrational modes between the extensional modes and the flexural
modes arises on the sandwich arch as well as the usual arch.

TABLE 4

Convergency of frequency parameter A of 2-hinge sandwich circular arch with high rise ratio
fIL=0-15({(=07112m, h = 12-7 mm, ¢ = 0-4572 mm, G/E = 0-0012)

m

~ A A

Mode 32 40 48 56 64
1 5-788 5-782 5778 5776 5-775
2 8-220 8-203 8194 8-188 8-185
3 10-913 10-873 10-851 10-838 10-829
4 10-994 10-986 10-982 10-979 10-978
5 13-174 13-107 13-070 13-049 13-035
6 14-926 14-818 14-760 14-725 14-702
7 16:715 16:556 16:471 16-421 16-388
8 18218 18-018 17-909 17-844 17-802
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TABLE 5

515

Convergency of frequency parameter . of 2-hinge sandwich parabolic arch with high rise ratio
fIL=015({=07112m, h =127 mm, ¢ = 0-4572 mm, G/E = 0-0012)

m
A

Mode 32 40 48 56 64
1 5-806 5-800 5796 5794 5793
2 8:391 8:374 8:364 8-358 8:354
3 10-791 10-787 10-785 10-784 10-783
4 10-941 10-900 10-878 10-865 10-857
5 13-119 13-050 13-013 12-991 12:976
6 14-947 14-838 14-780 14:745 14722
7 16:709 16-549 16464 16-414 16-381
8 18-255 18-051 17-939 17-873 17-829

5.2.2. Effect of core shear modulus

The values of the lowest eight natural frequency parameter A of a 2-hinge sandwich
circular arch with / = 0-7112m, t, = t, =t = 04572 mm, h = 12-7mm, E, = E, = E, = E,
f/L = 0-15 have been evaluated for a wide range of the core shear modulus to face elastic
modulus ratio G/E. The results are summarized in Table 6. In Table 6 the values of the
left end column have been calculated by using the method given by reference [4], and they
give the values of the frequency parameter of the arch with corresponding idealized

I-section.

It has been shown that as the ratio G/E increases the natural frequency parameter A of
the sandwich arch approaches that of the corresponding idealized I-sectional arch, and that
the natural frequency parameter /4 of the sandwich arch becomes small compared with that
of the corresponding idealized I-sectional arch below the value G/E = 0-0001.

f/L

Figure 3. Frequency curve of 2-hinge sandwich circular arch: ——, G/E=0-0012; ——, arch with I-section;

@, points of illustration of mode.
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0 0.1 0.2 0.3
f/L

Figure 4. Frequency curve of fixed sandwich circular arch: ——, G/E=0-0012; ——, arch with I-section.

5.2.3. Effect of core thickness

The values of the lowest eight natural frequency parameter A of a 2-hinge sandwich
circular arch with [=07112m, t#t=t=t=04572mm, E =FE,=E, =E,
G/E = 0-0012, f/L = 0-15 have been evaluated for a wide range of core thickness to face
thickness ratio //t. The results are summarized in Table 7. It has been shown that the
natural frequency parameter A of the sandwich arch becomes relatively small below the
value i/t = 10.

5.3. FREE VIBRATION OF SANDWICH ARCH WITH VISCOELASTIC CORE

The frequency curve of fixed sandwich circular arch with viscoelastic core of the shear
modulus G = Gy(1 + iv), and with /=07112m, ¢, =t, =t = 04572 mm, h = 12-7 mm,
E =FE, =FE,=E, Gy/E=0-0012, v= 04 is shown in Figure 6 with the frequency curve
of the sandwich arch with an elastic core. The natural frequency parameter A, has the
definitions Aj = pwil*/Eyly, > = wi(1 + iu) and the numerical values of the natural
frequency parameter /, and the loss factor u of the fixed circular sandwich arch for a case
of rise ratio f/L = 0-15 are shown in Table 8 for a wide range of loss factor v of the
viscoelastic core material.

Mode @ (b) © (d)

1

2

3

4

5

6 VNN T
T VY Y AN S Y

© SNV SN AR AP

Figure 5. Vibrational u-mode of 2-hinge sandwich arch: f/L = (a) 0-02084; (b) 0-05; (c) 0-10; (d) 0-15.
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TABLE 6
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Frequency parameter A of 2-hinge sandwich circular arch with various G|E ratios
((=07112m, h=12-7Tmm, ¢ = 04572 mm, f/L = 0-15)

G/E

I-sec. ! 8 K

Mode Ref. [4] 1/10 1/10? 1/10° 1/10* 1/10°
1 6:033 6-030 5999 5-735 4-720 3910
2 8-869 8-862 8774 8-088 6-128 4-930
3 11-169 11-167 11-143 10-637 7-508 5951
4 12-490 12-469 12-221 10-946 8-453 6684
5 15-800 15-758 15287 12-774 9-481 7-462
6 18-615 18-581 17-989 14-343 10-198 8-098
7 19-353 19-313 19-096 15960 11-143 8793
8 22-284 22-165 20-931 17-333 11-173 9-384

TABLE 7

Frequency parameter A of 2-hinge sandwich circular arch with various h/t ratios

(l=07112m, t = 0-4572 mm, G/E = 0-0012, f/L = 0-15)

h/t
r A A
Mode 50 40 30 20 10 5
1 7-462 6-779 5-978 4-994 3-674 2:742
2 9-857 9-:297 8:432 7-:204 5-410 4-079
3 11-634 11-280 11-033 9-577 7-284 5-546
4 13-399 12:394 11-166 10-702 8-788 6-805
5 15-792 14-709 13-400 11-841 10-414 8131
6 17-660 16:542 15-127 13-248 10.965 9:270
7 19-076 18-365 16-860 14-881 11-977 10-503
8 19-591 18-960 18-280 16-281 13-131 11-011
TABLE 8

Frequency parameter Jy and loss factor p of fixed circular sandwich arch with viscoelastic
core (I=07112m, h = 12-7mm, ¢ = 0-4572 mm, G,/E = 0-0012, f/L = 0-15)

0-1 0-2 0-4 0-8
0 e A N A N N A N\
Mode iu ;L() u j.() u ),() u ;LU Hu

1 6-879 6-883  0-017 6896  0-033 6943  0-061 7-082  0-096
2 8-604 8609 0-017 8626  0-034 8-688 0-064 8-875 0-100
3 11-120 11-123 0-006 11-130 0013 11-155 0024 11-:224  0-040
4 11-371 11-380  0-027 11-407  0-053 11-510  0-101 11-839  0-169
5 13484 13494  0-028 13-524  0-056 13-:637  0-109 14:023  0-188
6 15-000 15-013 0-033 15-053 0-065 15-201 0-125 15689  0-216
7 16:667 16682  0-036 16726  0-071 16:892  0-136 17-440  0-237
8 18-016 18-:041 0-034 18-111 0-069 18-343 0-137 18990  0-248
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20 —
<
10 —
\ \
0 0.1 0.2
f/L
Figure 6. Frequency curve of fixed sandwich circular arch with viscoelastic core: ——, Go/E=0-0012, v = 0-4;

———, with elastic core; @, points of illustration of loss factor.

It has been shown that the loss factor u of a sandwich arch is small in the extensional
vibration compared with the flexural vibration.

6. CONCLUSIONS

A method of analysis for the free vibration of a three-layer sandwich arch with an elastic
or viscoelastic core, and with various kinds of axis shape and boundary conditions has
been presented in this paper. The characteristic equation of the free vibration was derived
by applying Green functions comprising two pairs of tangential and normal displacements
of a sandwich arch under the individual action of a normal concentrated load and a
tangential concentrated load. The Green functions were obtained as discrete type solutions
of the differential equations governing the behaviour of a sandwich arch. The discrete type
solutions gave the solutions at each discrete point uniformly distributed on a sandwich arch
axis, and they can be obtained for a sandwich arch with non-uniform cross-section and
radius of curvature as well as a sandwich arch with uniform cross-section and radius of
curvature and enabled setting up of the frequency equation in eigenvalue form. By
applying the characteristic equation, the behaviour of the free vibration of a sandwich arch
with an elastic or viscoelastic core could be analysed efficiently without any calculation
using a trial and error method. It was shown that the numerical solution had a uniform
convergency and a good accuracy, and the effect of an elastic or viscoelastic core shear
modulus and the depth of the core to the natural frequency and the loss factor of a
sandwich arch were evaluated.
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APPENDIX A
Go=—g, Gu=g, Gu=1, Gp=g/h, Gu=1/h, Gy =fig:g/h,
Gss = £1/87, Gy = 1186/(f384), Gno= —05/(figs), Gss =g,
Gsr = f1g(1/( f3g4) — 1/(/igs))2, Gar = —1/h,  Ga = (fs + fo)/ I,
Ges = —2lfigs — il — g/, Gos = —(fsg2 — fags + 2/, Gn = hsGa,
Gu = MhGea — fs&1/(f189), G5 = h:Ges — 2(1 — g5)/(g487),
Grs = G + [5812:87/(189) + 2/gs, other
Ge=0, h=/fgi+ /g, h=[fgi+fegs+ 1&g, h=[fg/(f1g)+ 1/gs,

o E]]] o Ez[z _ E]Allz _ EzAzlz _ G]A]lz
f‘l_EU]O, ﬁ_EOIOD ﬁ_ EOIO > ﬁ_ EOIO Hl ﬁ_ KIEOIO,
f= G, A, _GbP 1 L I _ R
Je =GRy’ =L R’ &2 Ry &3 R, 84 Ry
_R _! _H _ N _H _d
gS_RZ) gﬁ_ha g7_ ln g8_2R9 g9_h3 gO_ l.
APPENDIX B

1. 2-HINGE SANDWICH ARCH
Boundary conditions of the left support;

X{BO = Xt{SO = XdﬁO = G420Xd20 + G470Xd70 = 0

Boundary conditions of the right support;

Xom = 0: AnimXao + AponXoo + AiamXaso + AcinXao + AasmXaso + Aazom Xwo = 0.

Hence,

ArimXaro + (Aazom + 00@azmm ) Xano + Aasam Xaso + AssmXawo = — Aazom X o,

where, o = — Gz /Gao;

KXism = 0: AssimXao + (adSZm + 06(14157m)Xdzo + Ausam Xaro + Aassm Xaso = — Ausom X awo;
KXaom = 0: asimXaro + (Qasom + 0asrn ) Xano + Adsam Xaro + assm Xago = — Qasom X o
GonXaom + GagnXaom = 0:
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(aanm + Panim)Xao + [(@oom + 0@sim) + B(Gpom + 0@n7m)] X0
+ (amm + ﬁadZ4n1)/Yd40 + (ad78m + ﬂa,m;m)deo = —(amm + ﬁadz‘)m)Xl‘)O,

Where, ﬁ = G42m/G47m~

Hence, the equations for #,—¢, are obtained as

t

153

|~

1y

i As3im
Aasim
Adeim

Aq7im + ﬁa21m

— Aaom
— Aasom
— Ad69m

— da1om — ﬁadZ‘)m

Aq3om + AAi37m
Agsom + A asim
Ad6om + o i6Tm

Aarom + O ar7m ~+ ﬁ (adzzm + 05611127m)

B.2. FIXED SANDWICH ARCH

Boundary conditions of the left support;
Xd40 = X(I'SO = Xdé() = Xt/SU = 0

Boundary conditions of the right support;

Xam = 0:
Xusm = 0O
KXaom = 0
Xagm = 0:

Hence, the equations for #,—¢, are obtained as follows:

Ai3gm
Aasgm

A dssm

Aa7am ﬂ Apam Aargm+ ﬁ Ansm

AanimXaro + AaonXno + Qusm X o + QX0 = — Aasom Xawo,

AasimXaro + Aasan Xno + QussmXazo + QusinXao = — Aasom X avo,

AastmXao + asom X0 + AassmXazo + Aastin Xao = — Aasom X avo s

AiimXao + Aasom X0 + Aassm Xazo + Aastin Xaro = — Aasom Xawo -

Aaaim
Aisim
Adsim

Aagim

B.3. HINGED-FIXED SANDWICH ARCH

Boundary conditions of the left support;

XBO = Xa’jO = X(lﬁ() = G420X1120 + G471)X1170 = 0

Aia2m
Agsom
Aacom

Aagom

Aia3m
Ags3m
Ads3m

Aag3m

Aid7m
Adsim
Ads1m

Aagim

— Aasom
— Aasom
— Adeom

— Aagom



VIBRATION OF SANDWICH ARCH 521
Boundary conditions of the right support;
KXagm = 0: Aanim Xaro + (Qaaom + 00wz ) Xano + Aasam Xaro + Aassm Xago = — Qasom X oo,
Xasm = 0: AasimXaro + (Aasom + 0astn )Xo + Qusam Xy + Aassm Xaso = — Aasom X w0,
KXiom = 0: AasimXaro + (Qasam + 0asrn ) Xano + AasamXaso + Aassm Xaso = — Qasom Xaoo,
Xagm = 0 amimXao + ((ldszm + OCadsm)X 20 + Aasam Xaro + Aassim Xaso = — Qasom X, 90

where, o = —G420/G470.
Hence, the equations for #,—¢, are obtained as follows:

A Aaim  Aaom + Oagzm Qasam  Aaagm — Aasom
£ Agsim Aasoam + Olastm Aasam Aasgm — Adsom
t3 N Aasim  Adsom + OldsTm  Adoam  Adosm ' — Qdsom
[4 Aasim Aasom + oA ag1m A igam A is8m — digom

B.4. FREE-FIXED SANDWICH ARCH
Boundary conditions of the left support;

Xao = Xpo = Xpo = Xipo = 0.
Boundary conditions of the right support;
KXasm = 0 Aasam Xaao + QassmXaso + Aasom Xaso + Aassim Xaso = — Aasom X avo 5
KXism = 0 Aasam X aao + Qassm Xaso + Aasom Xaso + AassmXago = — Aasom X a0,
Xiom = 0: Aasam X a0 + QassmXaso + Aasom Xaso + AassmXago = — Asom X 90,
Xagm = 0: Aaam X aro + AassmXaso + Aagom Xaoo + Qagsm Xaso = — Aagom Xavo -

Hence, the equations for #,—¢, are obtained as

t 1 Aassm  Aaasm  Aasem  Adasm — Aasom

153 Aasam  Aassm Aasem  asgm — Aasom

t 3 A d6am A iesm [ A d6’8m — Ad6om

1y Aagam — Aagsm — Aagem  Adgsm — Aagom
APPENDIX C

Betti’s law relating the normal concentrated load system shown in Figure Cla and the
inertia force system shown in Figure Clc introduces directly the integral equation

Piu(z) = f paui(s, z)u(s) + wi(s, z)w(s)] ds. (C1)

pwzu(s)ds

Wo(s,2) P,

pwzw(s)ds

Us(S,2)

(b)
Figure Cl. Three types of loading of sandwich arch.
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From the tangential concentrated load system shown in Figure C1b and the inertia force
system in Figure Clc, the following integral equation is obtained:

Pw(z) = f p ux(s, 2)u(s) + wa(s, z)w(s)] ds.

(€2
By considering the following relations:
u(z) =1Ys(S),  uls) =1Ys(n),  w(z)=1¥s5(),  w(s)=1Y¥s(n), ds=1Idn,
PP PP _Pr
ul(S, Z) - EOIO Ul(’/” é)a WYl(Sa Z) - EOI() Wl(’/la 5)9 uZ(S7 Z) - EOIO U2(’/], 5)9
3
1472(5, Z) = PZ]

E(JI(J Wz(na é)a

the following simultaneous integral equation is obtained from the equations (C1) and (C2)

Ye($) =J %Z[Ul(n, O Ye(n) + Wi(n, &) Ys(n)] dn

Y5(¢) =J %[Uz(n, &) Ye(n) + Waln, &)Ys(n)] dn.



