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In this paper, a method of analysis for the free vibration of a three-layer sandwich arch
with an elastic or viscoelastic core, and with various kinds of axis-shape and boundary
conditions is presented. The characteristic equation of the free vibration is derived by
applying Green functions. The Green functions are obtained in a discrete form for various
kinds of sandwich arches with non-uniform cross-section and radius of curvature. They
enable the setting up of the frequency equation in eigenvalue form.
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1. INTRODUCTION

The theory of the free vibration of a three-layer sandwich arch has been considered by
only a few investigators. Ahmed [1, 2] has analysed the flexural vibration characteristics
of a curved sandwich beam with an elastic core by the finite element displacement method.

It is the purpose of this paper to present an analytical method of the free vibration of
a three-layer sandwich arch with an elastic or viscoelastic core, and with an arbitrary
axis-shape and various boundary conditions. The characteristic equation of the free
vibration is derived by applying Green functions which are the two pairs of the normal
and tangential displacements of a sandwich arch under the individual action of a tangential
concentrated load and a normal concentrated load. The Green functions are obtained as
the discrete type solutions of the differential equations governing the behaviour of a
sandwich arch in this paper. The discrete type solutions give solutions at each discrete point
uniformly distributed on a sandwich arch axis, and they can be obtained for a sandwich
arch with non-uniform cross-section and radius of curvature as well as a sandwich arch
with uniform cross-section and radius of curvature. They enable the setting up of the
frequency equation in eigenvalue form. It is shown that by applying the characteristic
equation; the behaviour of the free vibration of a sandwich arch can be analysed efficiently
without any calculation using a trial and error method, and that the numerical solution
has a uniform convergency and a good accuracy. Moreover, the effect of the elastic or
viscoelastic core shear modulus and the depth of the core to the natural frequency and
the loss factor of a sandwich arch are evaluated. The analysis is carried out according to
the assumptions. (1) The face plates are elastic. (2) The core is elastic or linearly
viscoelastic, with a shear modulus of G or G=G0(1+ in). (3) There is no slipping between
the face plates and the core at their interfaces. (4) Shear strains in the face plates are
negligible, and longitudinal direct stresses in the core are negligible. (5) The shear strain
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is constant across the depth of the core. (6) Transverse direct strains in both core and face
plates are negligible.

2. FUNDAMENTAL EQUATION OF SANDWICH ARCH

The equilibrium equations of a three-layer sandwich arch having a normal load p(s) and
a tangential load q(s) whose element is shown in Figure 1(a) are given by the following
equations:

dQ/ds+N/R+ p(s)=0, dN/ds−Q/R+ q(s)=0, dM/ds=Q, (1a–c)

where Q, N and M are the shear force, normal force and bending moment of a sandwich
arch, R the radius of curvature of a sandwich arch axis, and s is the axial co-ordinate of
a sandwich arch whose origin is set at the left end.

Next, the relations between the shear force, axial force and bending moment of a
sandwich arch and those of the lower and upper face plates are obtained from Figure 1(a)
as follows:

Q=Q1 +Q2 + bht, N=N1 +N2, M=M1 +M2 +N1d1 +N2d2, (2a–c)

where Q1, Q2, N1, N2 and M1, M2 are the shar forces, axial forces and bending moments
of the lower and upper face plates, t is the shear stress of the core, b is the width of a
sandwich arch, h is the depth of the core, d1 and d2 are the distances between the centroidal
axis of a sandwich arch and the centroidal axes of the lower and upper face plates. The
distances d1 and d2 are as follows:

d1 + d2 =H, d2 = (E1A1/E2A2)d1, (3a, b)

where H= h+ t1/2+ t2/2, and t1 and t2 are the thicknesses of the lower and upper face
plates, E1A1 and E2A2 are the axial rigidities of the lower and upper face plates.

The relations between the angular, tangential, normal displacements of a sandwich arch
and those of the lower and upper face plates are given by the following equations:

u1 = u2 = u, w1 +w2 =2w, u1 = u2 = u, (4a–c)

where u1, u2 and u are the angular displacements at the centroidal axes of the lower, upper
face plates and for the sandwich arch, w1, u1, w2, u2 and w, u are the tangential, normal
displacements at the centroids of the lower, upper face plates and for the sandwich arch.

Figure 1. Element of sandwich arch.
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The relations between the angular displacement and the bending moments of the lower
and upper face plates are given by the following equations:

M1 =−E1I1 du/ds1, M2 =−E2I2 du/ds2, (5a, b)

where E1I1, E2I2 and s1, s2 are the flexural rigidities and the axial co-ordinates of the lower
and upper face plates, ds1 = (R1/R) ds, ds2 = (R2/R) ds, and R1, R2 are the radii of
curvature of lower, upper face plate axes.

From the equations (2b, c), (5a, b) the following equation is obtained:

(E1I1(R/R1)+E2I2(R/R2)) du/ds=−d2N−M+HN1. (6)

The relations between the tangential and normal displacements and the axial forces of the
lower and upper face plates are given by the following equations:

N1 =E1A1(dw1/ds1 − u/R1), N2 =E2A2(dw2/ds2 − u/R2), (7a, b)

From the equations (2b), (4b), (7a, b) the following equations are obtained:

E1A1
R
R1 0dw1

ds
−

u
R1=N1, E2A2

R
R2 02 dw

ds
−

dw1

ds
−

u
R1=N−N1. (8a, b)

Next, the relations between the displacements and the shear forces of the lower and
upper face plates are given by the following equations:

Q1 =
G1A1

k1 0du
ds1

+
w1

R1
− u1, Q2 =

G2A2

k2 0du
ds2

+
w2

R2
− u1, (9a, b)

where G1, A1, k1 and G2, A2, k2 are the elastic shear moduli, the cross-sectional areas, the
shear factors of the lower and upper face plates.

The shear stress t of the core of a three-layer sandwich arch shown in Figure 1(a) is
given by the following equation [1] under the assumption that the shear strain is constant
across the depth of the core

t=
G
h $H du

ds
+01+

h
2R1w1 −01−

h
2R1w2%, (10)

where G is the core shear modulus.
From the equations (2a), (4b), (9a, b) and (10), the following equation is obtained:
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From the tangential equilibrium equation of the lower face plate shown in Figure 1(b),
dN1/ds=Q1/R1 + bt, the following equation is obtained:

dN1/ds=Q1/R+(R1/R)bt. (12)

From the equations (4b), (10) and (12) the following equation is obtained:

0G1A1

k1

1
R1

+Gb
H
h

R1

R1 du
ds

−
dN1

ds
=

G1A1

k1

1
R

u+2G
b
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R1

R 01−
h
2R1w

−0G1A1

k1

1
R

1
R1

+2G
b
h

R1

R1w1. (13)

3. DISCRETE TYPE GREEN FUNCTION OF SANDWICH ARCH

By introducing the following non-dimensional expressions:

Xd1 =−
Ql2

E0I0
, Xd2 =−

Nl2

E0I0
, Xd3 =−

Ml
E0I0

, Xd4 = u, Xd5 =
w
l
, Xd6 =

u
l

Xd7 =
N1h

GHbl
, Xd8 =

w1

H
, h=

s
l
, d=1 or 2: l is length of arch axis,

the non-dimensional Green functions are defined by the following two pairs of tangential
and normal displacements of a sandwich arch with a concentrated load P1 or P2 at a
position s= z, (z/l= j) on the arch modelled in this paper

X15(h, j)=
P1l2

E0I0
W1(h, j), X16(h, j)=

P1l2

E0I0
U1(h, j) (14a, b)

X25(h, j)=
P2l2

E0I0
W2(h, j), X26(h, j)=

P2l2

E0I0
U2(h, j). (14c, d)

The first pair X15(h, j) and X16(h, j) are obtained as the two displacements with the other
quantities X11(h, j), . . . , X18(h, j) for a normal concentrated load P1 acting at a position
z/l= j on a sandwich arch axis; p(h)=P1d(h− j)/l and the second pair X25(h, j) and
X26(h, j) are obtained as the two displacements with the other quantities
X21(h, j), . . . , X28(h, j) for a tangential concentrated load P2 acting at a position z/l= j

on a sandwich arch axis; q(h)=P2d(h− j)/l, and they satisfy the following simultaneous
differential equation obtained by arranging the equations (1a–c), (6), (8a, b), (11) and (13)

dXdt

dh
= s

8

e=1

GteXde +
Pdl2

E0I0
ddtd(h− j), d=1, 2, t=10 8, (15)

where d(h− j) is Dirac’s delta function, dd1, dd2 are Kronecker’s deltas, E0I0 is standard
flexural rigidity, Gte is given in Appendix A.

By integrating the equation (15) over the interval [0, h], the following integral equation
is obtained:

Xdt (h)=Xdt (0)+g
h

0

s
8

e=1

Gte (z)Xde (z) dz+
Pdl2

E0I0
ddtu(h− j), (16)

where u(h− j) is a unit step function.
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Figure 2. Discrete points on arch axis.

Next, the bounded interval 0E hE 1 is divided into m equal-length parts, and each
divisional point is distinguished by a number from 0–m as shown in Figure 2.

By applying the numerical integration method using equally spaced argument values,
the equation (16) is discretely expressed as follows:

Xdti =Xdt0 + s
i

j=0

s
8

e=1

bijGtejXdej +
Pdl2

E0I0
ddtu(i− x), (17)

where u(i− x)=0 (iQ x), 0·5 (i= x) or 1 (iq x), x being the position of the concentrated
load Pd , bij is the weight coefficient of numerical integration, i=0–m and Xdti is the value
of the function Xdt (h) at a discrete point i on the sandwich arch axis shown in Figure 2.

The discrete type solution [8] of the simultaneous differential equation (15) can be
obtained by the following form:

Xdti = s
8

k=1

adtkiXdk0 + adt9i
Pdl2

E0I0
, d=1, 2, t=1–8, i=0–m. (18)

By substituting the equations Xdt0, Xdt1, Xdt2, . . . , Xdti given by equation (17) for equation
(18) in numbered order, the simultaneous equations to evaluate the elements adtki and adt9i

in the discrete type solution (18) are obtained finally as follows:

adtki = dkt + s
i

j=0

s
8

e=1

bijGtejadekj + ddtdk9u(i− x), k=1–9, (19)

The integral constants Xd10, Xd20, . . . , Xd80 being involved in the discrete type solution
(18) are to be evaluated by the boundary conditions of a sandwich arch.

The boundary conditions of a hinged end, fixed end and free end of a sandwich arch
can be expressed simply as follows:

M=w= u=M1 =M2 =0 (Xd3 =Xd5 =Xd6 =G42Xd2 +G47Xd7 =0):

simply supported end,

u=w= u=w1 =0 (Xd4 =Xd5 =Xd6 =Xd8 =0): fixed end,

Q=N=M=N1 =0 (Xd1 =Xd2 =Xd3 =Xd7 =0): free end.

By using these boundary conditions and the discrete type solution (18), the two pairs
of discrete type non-dimensional Green functions Xd5i and Xd6i defined by the equations
(14a–d) are obtained for a sandwich arch with various kinds of boundary condition as
follows:

Xd5i =
Pdl2

E0I0
Wdix , Xd6i =

Pdl2

E0I0
Udix , d=1, 2, (20a, b)

where Wdix and Udix are the values of the functions Wd (h, j) and Ud (h, j) defined by
the equations (14a–d) at a discrete point i on a sandwich arch with a normal concentrated
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load P1 or a tangential concentrated load P2 at a discrete point x, and they become as
follows:

Wdix = t1ad5oi + t2(ad5pi + aad57i )+ t3ad5qi + t4ad5ri + ad59i (21a)

Udix = t1ad6oi + t2(ad6pi + aad67i )+ t3ad6qi + t4ad6ri + ad69i, (21b)

where

o=1, p=2, q=4, r=8, a=−G420/G470: 2-hinge arch
o=1, p=2, q=3, r=7, a=0: fixed arch
o=1, p=2, q=4, r=8, a=−G420/G470: hinged-fixed arch
o=4, p=5, q=6, r=8, a=0: free-fixed curved beam

t1, t2, t3, t4 are listed in Appendix B.

4. CHARACTERISTIC EQUATION OF THE FREE VIBRATION OF A SANDWICH ARCH

From equations (1a–c), (6), (8a, b), (11) and (13), the differential equations of the normal
functions Q�, N�, M�, u�, W�, ū, N�1 and w̄1 of the harmonic free vibration of a sandwich arch
are obtained as follows:

dQ�
ds

+
N�
R

+ rv2ū=0,
dN�
ds

−
Q�
R

+ rv2w̄=0,
dM�
ds

=Q�,

0E1I1
R
R1

+E2I2
R
R21 du�

ds
=−M� − d2N�+HN�1,

E1A1
R
R1 0dw̄1

ds
−

ū
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E2A2
R
R2 02 dw̄
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−
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−

ū
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R
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R
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h
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where r is the mass per unit length of the sandwich arch.
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By using the following non-dimensional normal functions Y1–Y8,

Y1 =−Q�l2/E0I0, Y2 =−N�l2/E0I0, Y3 =−M�l/E0I0, Y4 = u�,

Y5 = w̄/l, Y6 = ū/l, Y7 =N�1h/GHbl, Y8 = w̄1/H,

the following simultaneous differential equation is derived from the equations (22a–h):

dYt /dh= s
8

e=1

FteYe , t=1–8, (23)

where F16 = l4, F25 = l4, other Fte =Gte are listed in Appendix A.

l4 =
rv2l4

E0I0
, v2 =6v2

0:
v2

0(1+ im):
elastic core
viscoelastic core

v0, m are the circular frequency and loss factor of the sandwich arch.
The discrete type solution of the simultaneous differential equation (23) is obtained by

the same method at the third section as follows:

Yti = s
8

k=1

atkiYk0, t=1–8, i=0–m, (24)

where

atki = dkt + s
i

j=0

s
8

e=1

bijFtejaekj , k=1–8.

By using the frequency equation derived from the discrete type solutions (24) and the
boundary conditions, the values of the natural frequency parameter l of the free vibration
of a sandwich arch are evaluated basically, but it needs a calculation using a trial and error
method. Therefore, to avoid this, a method setting up the frequency equation in eigenvalue
form is proposed as follows.

By applying the Green functions defined by the equations (14a–d),

Xd5(h, j)=
Pdl2

E0I0
Wd (h, j), Xd6(h, j)=

Pdl2

E0I0
Ud (h, j), d=1, 2

the following simultaneous integral equations concerning the non-dimensional normal
functions Y5(j) and Y6(j) of the harmonic free vibration of a sandwich arch are obtained
according to Betti’s law as shown in Appendix C

Y6(j)= l4 g
1

0

[U1(h, j)Y6(h)+W1(h, j)Y5(h)] dh, (25a)

Y5(j)= l4 g
1

0

[U2(h, j)Y6(h)+W2(h, j)Y5(h)] dh. (25b)

By applying the numerical integration method using the (m+1) equally spaced
argument values, the equations (25a, b) are discretely expressed as
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Y6x = l4 s
m

j=0

bmj (U1jxY6j +W1jxY5j ), (26a)

Y5x = l4 s
m

j=0

bmj (U2jxY6j +W2jxY5j ) x=0–m. (26b)

From the equations (26a, b), the homogeneous linear equations in 2(m+1) unknowns,
Y50–Y5m , Y60–Y6m , are obtained as

s
m

j=0

[(bmjU1jx − kdxx )Y6j + bmjW1jxY5j ]=0, (27a)

s
m

j=0

[bmjU2jxY6j +(bmjW2jx − kdxx )Y5j ]=0, x=0–m, (27b)

where k=1/l4.
The characteristic equation of the free vibration of a sandwich arch is obtained from

equations (27a, b) as

bm0U100 − k bm1U110 · · · bmmU1m0 bm0W100 bm1W110 · · · bmmW1m0

bm0U101 bm1U111 − k · · · bmmU1m1 bm0W101 bm1W111 · · · bmmW1m1

···
···

···
···

···
···

bm0U10m bm1U11m · · · bmmU1mm − k bm0W10m bm1W11m · · · bmmW1mm

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– =0.
bm0U200 bm1U210 · · · bmmU2m0 bm0W200 − k bm1W210 · · · bmmW2m0

bm0U201 bm1U211 · · · bmmU2m1 bm0W201 bm1W211 − k · · · bmmW2m1

···
···

···
···

···
···

bm0U20m bm1U21m · · · bmmU2mm bm0W20m bm1W21m · · · bmmW2mm − k

(28)

By applying the characteristic equation (28), the values of the natural frequency
parameter l and the loss factor m of a sandwich arch with a viscoelastic core can be
evaluated efficiently without a calculation using a trial and error method.

5. NUMERICAL RESULTS

In the numerical analysis, the following equation is used as the standard moment of
inertia of the cross-sectional area l0 of a three-layer sandwich arch

I0 =2(bt3/12+ h2bt/4).

This equation is the moment of inertia of area of the idealized I-section which consists of
two flanges corresponding to both face plates of a sandwich arch and a web of negligible
area and a height of the core depth of a sandwich arch.

5.1.      

Numerical solutions of the frequency parameter l for some sandwich circular or
parabolic arches are given in Tables 1–5 with the other theoretical solutions for the flat
curved beams similar to the straight beams from references [1] and [2]. The dimensions
and material properties of these sandwich arches are: length of arch l=0·7112 m, core
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T 1

Convergency of frequency parameter l and comparison of natural frequency f(Hz) to the
other theoretical value of 2-hinge sandwich circular arch with rise ratio f/L=0·02084

(l=0·7112 m, h=12·7 mm, t=0·4572 mm, G/E=0·0012)

Present study
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

m Ahmed
ZXXXXXXXXXXCXXXXXXXXXXV f f

Mode 32 40 48 56 64 64 Ref. [1]

1 4·338 4·338 4·338 4·337 4·337 182·7 199·5
2 6·029 6·023 6·019 6·017 6·016 351·4 394
3 8·687 8·668 8·657 8·651 8·647 726·1 746
4 11·022 10·982 10·960 10·947 10·939 1162 1175
5 13·114 13·044 13·006 12·984 12·969 1633 1639
6 14·996 14·886 14·828 14·793 14·770 2118 —
7 16·724 16·565 16·480 16·430 16·397 2611 —
8 18·318 18·108 17·993 17·924 17·880 3104 —

thickness h=12·7 mm, face thickness t1 = t2 = t=0·4572 mm face elastic modulus
E1 =E2 =E0 =E=6·89×1010 N/m2, core shear modulus G=0·0012E core density
rc =32·8 kg/m3, face density rf =2680 kg/m3.

The numerical solution has been obtained by applying the trapezoidal rule, and has a
uniform convergency as shown in Tables 1–5. In Table 1 the discrepancies between the
authors’ values and those calculated by Ahmed [1] are of the order of 10% for the two
lower frequencies, but for the others the discrepancies are small. In Table 2 the authors’
values have a good agreement with those calculated by Ahmed [1, 2]. In Table 3 the italic
values calculated by Ahmed [2] are the frequencies for a free-fixed straight sandwich beam,
and the authors’ values for the flat free-fixed curved beam similar to the straight beam are
not in good agreement with the values for the free-fixed curved sandwich beam by Ahmed
[1] but with the italic values by Ahmed [2].

T 2

Convergency of frequency parameter l and comparison of natural frequency f(Hz) to the
other theoretical value of fixed sandwich circular arch with rise ratio f/L=0·02084

(l=0·7112 m, h=12·7 mm, t=0·4572 mm, G/E=0·0012)

Present study
ZXXXXXXXXXXXXXXXXXXXXXXXXV Ahmed

m f
ZXXXXXXXXXCXXXXXXXXXV f ZXXXCXXV

Mode 32 40 48 56 64 64 Ref. [1] Ref. 2

1 5·023 5·021 5·020 5·019 5·019 244·6 264·2 240
2 7·093 7·083 7·078 7·074 7·072 485·6 522 474
3 9·459 9·435 9·423 9·415 9·410 859·8 889 843
4 11·553 11·509 11·486 11·471 11·462 1276 1312 1253
5 13·479 13·406 13·367 13·343 13·328 1725 1767 1697
6 15·250 15·138 15·079 15·043 15·020 2190 — —
7 16·909 16·748 16·662 16·611 16·578 2668 — —
8 18·411 18·242 18·128 18·059 18·014 3151 — —
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T 3

Convergency of frequency parameter l and comparison of natural frequency f(Hz) to the
other theoretical values of free-fixed sandwich circular curved and straight beams

(l=0·7112 m, h=12·7 mm, t=0·4572 mm, G/E=0·0012, f/L=0·02084, f/L=0)

Present study
ZXXXXXXXXXXXXCXXXXXXXXXXXV Ahmed

m f
ZXXXXXXXXXCXXXXXXXXXV f ZXXXXXXV

Mode 32 40 48 56 64 64 Ref. [1] Ref. [2]

1 1·866 1·865 1·865 1·865 1·865 33·8 179 33·97
2 4·528 4·525 4·523 4·523 4·522 198·5 266 200·5
3 7·289 7·278 7·272 7·269 7·266 513 546 517
4 9·735 9·708 9·694 9·685 9·679 910 934 918
5 11·922 11·871 11·844 11·827 11·816 1356 1379 1368
6 13·065 13·063 13·063 13·062 13·062 1657 — —
7 13·904 13·820 13·775 13·748 13·731 1831 — 1844
8 15·707 15·580 15·511 15·471 15·444 2316 — 2331

5.2.        

5.2.1. Frequency curve and free vibrational mode of a sandwich circular arch
The frequency curves of 2-hinge and fixed sandwich circular arches with l=0·7112 m

t1 = t2 = t=0·4572 mm, h=12·7 mm, E1 =E2 =E0 =E and G/E=0·0012 are shown in
Figures 3 and 4. The dotted lines are the frequency curves of the arch with the
corresponding idealized I-section, which consists of two flanges corresponding to both face
plates of the sandwich arch and a web of negligible area and a height of the core depth
of the sandwich arch. For some 2-hinge sandwich arches in Figure 3, the free vibrational
u-mode is shown in Figure 5.

It has been shown that the difference of the frequency curves between sandwich arch
and I-sectional arch becomes large at higher degrees of free vibration, and that the
transition of the free vibrational modes between the extensional modes and the flexural
modes arises on the sandwich arch as well as the usual arch.

T 4

Convergency of frequency parameter l of 2-hinge sandwich circular arch with high rise ratio
f/L=0·15 (l=0·7112 m, h=12·7 mm, t=0·4572 mm, G/E=0·0012)

m
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

Mode 32 40 48 56 64

1 5·788 5·782 5·778 5·776 5·775
2 8·220 8·203 8·194 8·188 8·185
3 10·913 10·873 10·851 10·838 10·829
4 10·994 10·986 10·982 10·979 10·978
5 13·174 13·107 13·070 13·049 13·035
6 14·926 14·818 14·760 14·725 14·702
7 16·715 16·556 16·471 16·421 16·388
8 18·218 18·018 17·909 17·844 17·802
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T 5

Convergency of frequency parameter l of 2-hinge sandwich parabolic arch with high rise ratio
f/L=0·15 (l=0·7112 m, h=12·7 mm, t=0·4572 mm, G/E=0·0012)

m
ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

Mode 32 40 48 56 64

1 5·806 5·800 5·796 5·794 5·793
2 8·391 8·374 8·364 8·358 8·354
3 10·791 10·787 10·785 10·784 10·783
4 10·941 10·900 10·878 10·865 10·857
5 13·119 13·050 13·013 12·991 12·976
6 14·947 14·838 14·780 14·745 14·722
7 16·709 16·549 16·464 16·414 16·381
8 18·255 18·051 17·939 17·873 17·829

5.2.2. Effect of core shear modulus
The values of the lowest eight natural frequency parameter l of a 2-hinge sandwich

circular arch with l=0·7112 m, t1 = t2 = t=0·4572 mm, h=12·7 mm, E1 =E2 =E0 =E,
f/L=0·15 have been evaluated for a wide range of the core shear modulus to face elastic
modulus ratio G/E. The results are summarized in Table 6. In Table 6 the values of the
left end column have been calculated by using the method given by reference [4], and they
give the values of the frequency parameter of the arch with corresponding idealized
I-section.

It has been shown that as the ratio G/E increases the natural frequency parameter l of
the sandwich arch approaches that of the corresponding idealized I-sectional arch, and that
the natural frequency parameter l of the sandwich arch becomes small compared with that
of the corresponding idealized I-sectional arch below the value G/E=0·0001.

Figure 3. Frequency curve of 2-hinge sandwich circular arch: ——, G/E=0·0012; –––, arch with I-section;
W, points of illustration of mode.
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Figure 4. Frequency curve of fixed sandwich circular arch: ——, G/E=0·0012; –––, arch with I-section.

5.2.3. Effect of core thickness
The values of the lowest eight natural frequency parameter l of a 2-hinge sandwich

circular arch with l=0·7112 m, t1 = t2 = t=0·4572 mm, E1 =E2 =E0 =E,
G/E=0·0012, f/L=0·15 have been evaluated for a wide range of core thickness to face
thickness ratio h/t. The results are summarized in Table 7. It has been shown that the
natural frequency parameter l of the sandwich arch becomes relatively small below the
value h/t=10.

5.3.        

The frequency curve of fixed sandwich circular arch with viscoelastic core of the shear
modulus G=G0(1+ in), and with l=0·7112 m, t1 = t2 = t=0·4572 mm, h=12·7 mm,
E1 =E2 =E0 =E, G0/E=0·0012, n=0·4 is shown in Figure 6 with the frequency curve
of the sandwich arch with an elastic core. The natural frequency parameter l0 has the
definitions l4

0 = rv2
0l4/E0I0, v2 =v2

0(1+ im) and the numerical values of the natural
frequency parameter l0 and the loss factor m of the fixed circular sandwich arch for a case
of rise ratio f/L=0·15 are shown in Table 8 for a wide range of loss factor n of the
viscoelastic core material.

Figure 5. Vibrational u-mode of 2-hinge sandwich arch: f/L=(a) 0·02084; (b) 0·05; (c) 0·10; (d) 0·15.
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T 6

Frequency parameter l of 2-hinge sandwich circular arch with various G/E ratios
(l=0·7112 m, h=12·7 mm, t=0·4572 mm, f/L=0·15)

G/E
ZXXXXXXXXXXXXCXXXXXXXXXXXXVI-sec.

Mode Ref. [4] 1/10 1/102 1/103 1/104 1/105

1 6·033 6·030 5·999 5·735 4·720 3·910
2 8·869 8·862 8·774 8·088 6·128 4·930
3 11·169 11·167 11·143 10·637 7·508 5·951
4 12·490 12·469 12·221 10·946 8·453 6·684
5 15·800 15·758 15·287 12·774 9·481 7·462
6 18·615 18·581 17·989 14·343 10·198 8·098
7 19·353 19·313 19·096 15·960 11·143 8·793
8 22·284 22·165 20·931 17·333 11·173 9·384

T 7

Frequency parameter l of 2-hinge sandwich circular arch with various h/t ratios
(l=0·7112 m, t=0·4572 mm, G/E=0·0012, f/L=0·15)

h/t
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

Mode 50 40 30 20 10 5

1 7·462 6·779 5·978 4·994 3·674 2·742
2 9·857 9·297 8·432 7·204 5·410 4·079
3 11·634 11·280 11·033 9·577 7·284 5·546
4 13·399 12·394 11·166 10·702 8·788 6·805
5 15·792 14·709 13·400 11·841 10·414 8·131
6 17·660 16·542 15·127 13·248 10.965 9·270
7 19·076 18·365 16·860 14·881 11·977 10·503
8 19·591 18·960 18·280 16·281 13·131 11·011

T 8

Frequency parameter l0 and loss factor m of fixed circular sandwich arch with viscoelastic
core (l=0·7112 m, h=12·7 mm, t=0·4572 mm, G0/E=0·0012, f/L=0·15)

n
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXXV

0·1 0·2 0·4 0·8
0 ZXXCXXV ZXXCXXV ZXXCXXV ZXXCXXV

Mode l0 l0 m l0 m l0 m l0 m

1 6·879 6·883 0·017 6·896 0·033 6·943 0·061 7·082 0·096
2 8·604 8·609 0·017 8·626 0·034 8·688 0·064 8·875 0·100
3 11·120 11·123 0·006 11·130 0·013 11·155 0·024 11·224 0·040
4 11·371 11·380 0·027 11·407 0·053 11·510 0·101 11·839 0·169
5 13·484 13·494 0·028 13·524 0·056 13·637 0·109 14·023 0·188
6 15·000 15·013 0·033 15·053 0·065 15·201 0·125 15·689 0·216
7 16·667 16·682 0·036 16·726 0·071 16·892 0·136 17·440 0·237
8 18·016 18·041 0·034 18·111 0·069 18·343 0·137 18·990 0·248
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Figure 6. Frequency curve of fixed sandwich circular arch with viscoelastic core: ——, G0/E=0·0012, n=0·4;
–––, with elastic core; W, points of illustration of loss factor.

It has been shown that the loss factor m of a sandwich arch is small in the extensional
vibration compared with the flexural vibration.

6. CONCLUSIONS

A method of analysis for the free vibration of a three-layer sandwich arch with an elastic
or viscoelastic core, and with various kinds of axis shape and boundary conditions has
been presented in this paper. The characteristic equation of the free vibration was derived
by applying Green functions comprising two pairs of tangential and normal displacements
of a sandwich arch under the individual action of a normal concentrated load and a
tangential concentrated load. The Green functions were obtained as discrete type solutions
of the differential equations governing the behaviour of a sandwich arch. The discrete type
solutions gave the solutions at each discrete point uniformly distributed on a sandwich arch
axis, and they can be obtained for a sandwich arch with non-uniform cross-section and
radius of curvature as well as a sandwich arch with uniform cross-section and radius of
curvature and enabled setting up of the frequency equation in eigenvalue form. By
applying the characteristic equation, the behaviour of the free vibration of a sandwich arch
with an elastic or viscoelastic core could be analysed efficiently without any calculation
using a trial and error method. It was shown that the numerical solution had a uniform
convergency and a good accuracy, and the effect of an elastic or viscoelastic core shear
modulus and the depth of the core to the natural frequency and the loss factor of a
sandwich arch were evaluated.
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APPENDIX A

G12 =−g1, G21 = g1, G31 =1, G42 = g0/h1, G43 =1/h1, G47 = f7g7g9/h1,

G86 = g1/g7, G87 = f7g6/( f3g4), G52 =−0·5/( f4g5), G56 = g1,

G57 = f7g9(1/( f3g4)−1/( f4g5))/2, G61 =−1/h2, G64 = ( f5 + f6)/h2,

G65 =−2[f6g3 − f7(1− g8)]/h2, G68 =−( f5g2 − f6g3 +2f7)g7/h2, G71 = h3G61,

G74 = h3G64 − f5g1/( f7g9), G75 = h3G65 −2(1− g8)/(g4g7),

G78 = h3G68 + f5g1g2g7/( f7g9)+2/g4, other

Gte =0; h1 = f1g4 + f2g5, h2 = f5g4 + f6g5 + f7g7, h3 = f5g2/( f7g9)+1/g4,

f1 =
E1I1

E0I0
, f2 =

E2I2

E0I0
, f3 =

E1A1l2

E0I0
, f4 =

E2A2l2

E0I0
, f5 =

G1A1l2

k1E0I0
,

f6 =
G2A2l2

k2E0I0
, f7 =

Gbl3

E0I0
, g1 =

l
R

, g2 =
l

R1
, g3 =

l
R2

, g4 =
R
R1

,

g5 =
R
R2

, g6 =
l
h
, g7 =

H
l
, g8 =

h
2R

, g9 =
H
h

, g0 =
d2

l
.

APPENDIX B

B.1. 2-  

Boundary conditions of the left support;

Xd30 =Xd50 =Xd60 =G420Xd20 +G470Xd70 =0.

Boundary conditions of the right support;

Xd3m =0: ad31mXd10 + ad32mXd20 + ad34mXd40 + ad37mXd70 + ad38mXd80 + ad39mXd90 =0.

Hence,

ad31mXd10 + (ad32m + aad37m )Xd20 + ad34mXd40 + ad38mXd80 =−ad39mXd90,

where, a=−G420/G470;

Xd5m =0: ad51mXd10 + (ad52m + aad57m )Xd20 + ad54mXd40 + ad58mXd80 =−ad59mXd90;

Xd6m =0: ad61mXd10 + (ad62m + aad67m )Xd20 + ad64mXd40 + ad68mXd80 =−ad69mXd90;

G42mXd2m +G47mXd7m =0:
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(ad71m + bad21m )Xd10 + [(ad72m + aad77m )+ b(ad22m + aad27m )]Xd20

+ (ad74m + bad24m )Xd40 + (ad78m + bad28m )Xd80 =−(ad79m + bad29m )Xd90,

where, b=G42m /G47m .

Hence, the equations for t1–t4 are obtained as

t1

t2

G
G

G

K

k

G
G

G

L

l
t3

=

t4

ad31m ad32m + aad37m ad34m ad38m

ad51m ad52m + aad57m ad54m ad58m

G
G

G

K

k

G
G

G

L

l
ad61m ad62m + aad67m ad64m ad68m

−1

.

ad71m+ba21m ad72m+aad77m+b(ad22m+aad27m ) ad74mbad24m ad78m+bad28m

− ad39m

− ad59m

G
G

G

K

k

G
G

G

L

l
−ad69m

−ad79m−bad29m

B.2.   

Boundary conditions of the left support;

Xd40 =Xd50 =Xd60 =Xd80 =0.

Boundary conditions of the right support;

Xd4m =0: ad41mXd10 + ad42mXd20 + ad43mXd30 + ad47mXd70 =−ad49mXd90,

Xd5m =0: ad51mXd10 + ad52mXd20 + ad53mXd30 + ad57mXd70 =−ad59mXd90,

Xd6m =0: ad61mXd10 + ad62mXd20 + ad63mXd30 + ad67mXd70 =−ad69mXd90,

Xd8m =0: ad81mXd10 + ad82mXd20 + ad83mXd30 + ad87mXd70 =−ad89mXd90.

Hence, the equations for t1–t4 are obtained as follows:

K L K L K Lt1 ad41m ad42m ad43m ad47m
−1 −ad49m

G G G G G Gt2 ad51m ad52m ad53m ad57m −ad59mG G G G G G
t3

=
ad61m ad62m ad63m ad67m

.
−ad69m

.
G G G G G G

t4 ad81m ad82m ad83m ad87m − ad89mk l k l k l

B.3. H-  

Boundary conditions of the left support;

Xd30 =Xd50 =Xd60 =G420Xd20 +G470Xd70 =0.
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u2(s,z)
(c)

ρω2w(s)ds
ρω2u(s)ds

u(z)

w(z)

    521

Boundary conditions of the right support;

Xd4m =0: ad41mXd10 + (ad42m + aad47m )Xd20 + ad44mXd40 + ad48mXd80 =−ad49mXd90,

Xd5m =0: ad51mXd10 + (ad52m + aad57m )Xd20 + ad54mXd40 + ad58mXd80 =−ad59mXd90,

Xd6m =0: ad61mXd10 + (ad62m + aad67m )Xd20 + ad64mXd40 + ad68mXd80 =−ad69mXd90,

Xd8m =0: ad81mXd10 + (ad82m + aad87m )Xd20 + ad84mXd40 + ad88mXd80 =−ad89mXd90,

where, a=−G420/G470.
Hence, the equations for t1–t4 are obtained as follows:

K L K L K Lt1 ad41m ad42m + aad47m ad44m ad48m
−1 −ad49m

G G G G G Gt2 ad51m ad52m + aad57m ad54m ad58m −ad59mG G G G G G
t3

=
ad61m ad62m + aad67m ad64m ad68m

.
− ad69m

.
G G G G G G

t4 ad81m ad82m + aad87m ad84m ad88m −ad89mk l k l k l

B.4. -  

Boundary conditions of the left support;

Xd10 =Xd20 =Xd30 =Xd70 =0.

Boundary conditions of the right support;

Xd4m =0: ad44mXd40 + ad45mXd50 + ad46mXd60 + ad48mXd80 =−ad49mXd90,

Xd5m =0: ad54mXd40 + ad55mXd50 + ad56mXd60 + ad58mXd80 =−ad59mXd90,

Xd6m =0: ad64mXd40 + ad65mXd50 + ad66mXd60 + ad68mXd80 =−ad69mXd90,

Xd8m =0: ad84mXd40 + ad85mXd50 + ad86mXd60 + ad88mXd80 =−ad89mXd90.

Hence, the equations for t1–t4 are obtained as

K L K L K Lt1 ad44m ad45m ad46m ad48m
−1 − ad49m

G G G G G Gt2 ad54m ad55m ad56m ad58m −ad59mG G G G G G
t3

=
ad64m ad65m ad66m ad68m

.
− ad69m

.
G G G G G G

t4 ad84m ad85m ad86m ad88m −ad89mk l k l k l

APPENDIX C

Betti’s law relating the normal concentrated load system shown in Figure C1a and the
inertia force system shown in Figure C1c introduces directly the integral equation

P1u(z)=g
l

0

rv2[u1(s, z)u(s)+w1(s, z)w(s)] ds. (C1)

Figure C1. Three types of loading of sandwich arch.
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From the tangential concentrated load system shown in Figure C1b and the inertia force
system in Figure C1c, the following integral equation is obtained:

P2w(z)=g
l

0

rv2[u2(s, z)u(s)+w2(s, z)w(s)] ds. (C2)

By considering the following relations:

u(z)= lY6(j), u(s)= lY6(h), w(z)= lY5(j), w(s)= lY5(h), ds= l dh,

u1(s, z)=
P1l3

E0I0
U1(h, j), w1(s, z)=

P1l3

E0I0
W1(h, j), u2(s, z)=

P2l3

E0I0
U2(h, j),

w2(s, z)=
P2l3

E0I0
W2(h, j),

the following simultaneous integral equation is obtained from the equations (C1) and (C2):

Y6(j)=g
1

0

rv2l4

E0I0
[U1(h, j)Y6(h)+W1(h, j)Y5(h)] dh

Y5(j)=g
1

0

rv2l4

E0I0
[U2(h, j)Y6(h)+W2(h, j)Y5(h)] dh.


